Advanced VLSI Design Final Project

Verilog HDL Based Simulation of Process Variance
Among Integrated Circuits
Xi Qian, Lixing Zhao

1. Background and Introduction
In IC manufacturing, flaws are supposed to emerge randomly. If same or familiar failures keep on showing up, it’s highly likely that certain site(s) on chip suffer systematical vulnerability through fabrication processes, and local layout and/or routing should be redone to improve the yield. To pinpoint a problematical site, small delay tests and diagnosis must be conducted and results compared with those from simulations.
Path delays consist of two parts: a systematical component and a random component. The former is viewed stable for one chip and its adjacent neighbors on wafer, and the latter varies within a range upon every operation. Most simulation methods, such as SPICE, suffer insufficiency in mimicry of this random component, thus fail in bringing about statistical delay information. Moreover, process variances are hard simulate, thus handicapping the approximation to factual cases.
This report involves partial work of relative ranking research, which aims to small delay fault diagnosis and requires for capability in generating statistical delay information referring not only random delay components but also process variances. We use ISCAS89 benchmarks for analysis, and all types of logic gates involved are rewritten into new styles and benchmarks are modified into equivalent combinational-logic circuits for easier LOS (launch on shift) or LOC (launch on capture) test pattern application.
The structure of this report is as follow: Sections 2 and 3 explains and exemplify our descriptions and tests of basic gates; Section 4 shows the modification of benchmarks containing delay information; Section 5 provides the test bench for modified benchmark and related simulation is conducted; Section 6 gives conclusions.
2. Remodeling Basic Gates
[image: image1.png]i}

(RN (10 N
T

000

In CAD design, HDL codes are mapped onto certain technologies upon synthesis, and these technology libraries contain various basic cells/gates. We use ISCAS89 benchmarks here, which include up to 13 types of combinational gates, namely NOT, 2/3/4 input NOR/NAND/OR/AND gates. By remodeling these basic gates into a new description style that delay parameters can be specified, we then substitute all original gates in benchmarks with new gates without changing the logic function.
(1) NOT Gate (inverter)
Inverters are the most essential structure of CMOS technology. See in figure on the right. We assume that ideally, the W/L ratios of PMOS and NMOS are manipulated to achieve balanced rising and falling delays. We also assume that the random component would be no more than 10% of the systematical component. Thus a new description is as follow, where we specify systematical components of both rising and falling time as 100 which bears no unit:
-----------------------------inverter---------------------------
module not_gate (dout,din);

 parameter rise_sys=100;

 parameter rise_ran=10; //[0,10]

 parameter fall_sys=100;

 parameter fall_ran=10;

 input din;

 output dout;

 reg dout;

 always @ din begin

 if (din==0) dout<= #(rise_sys+({$random}%rise_ran)) 1;

 else if (din==1) dout<= #(fall_sys+({$random}%fall_ran)) 0;

 else dout<= ~din;

end
always @ (dout) dout<= ~din;

endmodule
-----------------------end of inverter-------------------------

All parameters can be redefined upon instantiation in higher level modules. For example, we can use unbalanced single MOS rising and falling time as 90 and 120, respectively, and use 20% on rising and 30% on falling as random components, by setting upper limits rise_ran=90x20%=18 and fall_ran=120x30%=36. Random delay components are generated via the $random function.
Note the second always block with sensitive signal dout is illegal in real designs as one same signal cannot be assigned in more than one always block. However in this pure simulation case, this description suffers no problem and help to prevent logic errors.
(2) 4-input NAND Gate
[image: image10.png]Inputs Outputs
® 7
Present State Next State
v Y

Clock

Here we use 4-input NAND gate for discussion to show the input-dependent delays of multi-input gates. See from figure on the right, and still assum W/L ratios are balanced as same as invertors, the switching time from inputs to output varies. For example, if inputs switch from 1111 to one-0-three-1, VDD charges the output capacitor via one PMOS and we represent this delay as 100; a two-0-two-1 input combination, however, would charge the output with twice the current density of the former case via two PMOSs, thus causing half of the former delay as 100/2=50. Familiar analysis can be done for all charging cases. For discharging, the only possibility is that inputs turn from non-all-1 to all-1, and the output capacitor is discharged through 4 serial NMOSs, thus the delay is 100x4=400. The codes for a 4-input NAND gate is as follow:
---------------------------NAND 4-----------------------------

module nand4_gate (y,in0,in1,in2,in3);

parameter rise_sys_1=100;
parameter rise_sys_2=50;
parameter rise_sys_3=33;
parameter rise_sys_4=25;
parameter rise_ran_1=10; //[0,10]
parameter rise_ran_2=5; //[0,5]
parameter rise_ran_3=3; //[0,3]
parameter rise_ran_4=3; //[0,3]
parameter fall_sys=400;
parameter fall_ran=40; //[0,40]
input in0,in1,in2,in3;
output y;
reg y;

 always @ (in0 or in1 or in2 or in3) begin

case ({in0,in1,in2,in3})

4'b0111,4'b1011,4'b1101,4'b1110: y<= #(rise_sys_1+({$random}%rise_ran_1)) 1;

4'b0011,4'b0101,4'b0110,4'b1100,4'b1010,4'b1001: y<= #(rise_sys_2+({$random}%rise_ran_2)) 1;

4'b0001,4'b0010,4'b0100,4'b1000: y<= #(rise_sys_3+({$random}%rise_ran_3)) 1;

4'b0000: y<= #(rise_sys_4+({$random}%rise_ran_4)) 1;

4'b1111: y<= #(fall_sys+({$random}%fall_ran)) 0;

default: y<=~(in0&in1&in2&in3);

endcase

 end

always @(y) y<=~(in0&in1&in2&in3);

endmodule
------------------------end of NAND 4------------------------

(3) 4-input AND Gate

We may redefine all AND and OR gates the same way as (2). However, in most technology libraries, AND gates are implemented with cascaded NAND and NOT gates, and so are ORs with NOR and NOT. Using structural description here helps to save time and ascertain correctness:
--

module and4_gate (y,in0,in1,in2,in3);

parameter na_r_s_1=100; //nand rise system
parameter na_r_s_2=50;
parameter na_r_s_3=33;
parameter na_r_s_4=25;

 parameter na_r_r_1=10; //nand rise random //[0,10]

parameter na_r_r_2=5; //[0,5]
parameter na_r_r_3=3; //[0,3]
parameter na_r_r_4=3; //[0,3]

 parameter na_f_s=400; //nand fall system

parameter na_f_r=40; //nand fall random //[0,40]
parameter i_r_s=100; //invertor rise system

 parameter i_r_r=10; //[0,10]

 parameter i_f_s=100;

 parameter i_f_r=10;

 input in0,in1,in2,in3;

 output y;

 wire temp;

nand4_gate #(na_r_s_1,na_r_s_2,na_r_s_3,na_r_s_4,na_r_r_1,na_r_r_2,na_r_r_3,na_r_r_4,na_f_s,na_f_r)
G1 (temp,in0,in1,in2,in3);

not_gate #(i_r_s,i_r_r,i_f_s,i_f_r) G2 (y,temp);

endmodule
--

3. Simulation of Basic Gates
We did simulate all basic gates for correctness. In this report, we provide the test bench codes and output waveform of 4-input AND gate, as it is implemented with a 4-input NAND gate and a NOT gate.
----------------------------Ttest AND 4----------------------------

module test_and4 ();

 reg [3:0] ins;

 wire y;

 initial begin

 ins=4'b1111;

 # 600 ins=4'b0111; //1 PMOS charing at NAND
 # 600 ins=4'b1111; //4 serial NMOS discharing at NAND
 # 600 ins=4'b0011; //2 parallel PMOS charing at NAND
 # 600 ins=4'b1111;

 # 600 ins=4'b0001; //3 parallel PMOS charing at NAND
 # 600 ins=4'b1111;

 # 600 ins=4'b0000; //4 parallel PMOS charing at NAND
600 ins=4'b0101;
 //fast switching inputs, should stick to final change
 # 44 ins=4'b1111;

 # 17 ins=4'b0001;

 # 30 ins=4'b1111;

 # 78 ins=4'b0000;

 # 1000 $finish;

 end

 and4_gate DUT (y,ins[3],ins[2],ins[1],ins[0]);

endmodule
--------------------------end of test AND 4-----------------------

From output waveform as shown below, the output delay is apparently dependent to inputs.
[image: image12.png]

Figure 1. Simulation Waveform of 4-input AND gate
4. Benchmark Modification
Several types of modification should be considered here:
(1) Ports and Wiring

Any sequential circuit can be expressed with the following Huffman Model:

[image: image2]
Figure 2, Huffman Model for Sequential Circuits
Our first modification of benchmarks is to break down the flip-flops and wire their former outputs and inputs as inputs and outputs, respectively, of the combinational logic, e.g., into the manner of Figure 3:
[image: image3.png]Sequential_INs
Wec Pair>

Comb.
Logic

Comb_OUTs
—

Sequential_OUTs
—
<Transition Observ.>

Figure 3: modified circuits
Table I gives the changes from the before to the after:
	Before
	After

	FFs inputs (wire)
	module output bus SEQ_OUTs

	FFs outputs (wire)
	module inputs bus SEQ _INs

	module inputs
	change to wire type and map to input bus CL_INs

	module outputs
	change to wire type and map to input bus CL_OUTs

Table I. Ports and wiring modifications
(2) Gates
We substitute all gates of the benchmark with our re-defined gates, with connections inherited. Moreover, for parameters of every cell, we use global parameter for easy control.
(3) Parameters
As narrated in (2), prior to the declaration of benchmark ports, we add global parameters to control the delay behavior of every gate.
To make it clearer and more obvious, an example is given follow:
------------------------------original benchmark------------------------------
//m inputs, n outputs, i DFFs, j gates
module circuit_name (CK, input1, input2, …, inputm, output1, output2, …, outputn);

input CK, input1, input2, …, inputm;

output output1, output2, …, outputn;

wire wire1, wire2, … ,wirep;
dff DFF_1(CK,Q1,D1);
dff DFF_2(CK,Q2,D2);
…
dff DFF_i(CK,Qi,Di);

gate_type gate_name1 (...);

gate_type gate_name2 (...);

…
and AND2_24(IIII352,v8,C124D);
and AND2_25(IIII336,C124D,v12);
…

gate_type gate_namej (...);

endmodule
------------------------------end of original benchmark ------------------------------
Carefully compare its modified counterpart as below, together with t from figures 2 to 3:
------------------------------modified benchmark------------------------------

module circuit_name_m (CL_INs,CL_OUTs,SEQ_INs,SEQ_OUTs);

parameter r1s=100;

//single MOSFET rising systematical component

parameter r2s_ftr=50;

//parallel-2 MOSFET rising systematical component

…

parameter r1r=10;

// single MOSFET rising random component

parameter r2r_ftr=5;

//parallel-2 MOSFET rising random component

…

input [m-1,0] CL_INs;

input [i-1:0] SEQ_INs;

output [n-1:0] CL_OUTs;

output [i-1:0] SEQ_OUTs;

wire input1, input2, …, input m, output1, output2, …, output n;

wire D1,D2,…,Di,Q1,Q2,…,Qi;

assign { input1, input2, …, input m}=CL_INs [m-1,0];

assign {Q1,Q2,…,Qi}=SEQ_INs[i-1:0];

assign CL_OUTs [n-1:0]={output1, output2, …, output n};

assign SEQ_OUTs [n-1:0]={D1,D2,…,Di};

new_gate_type #(parameter_list_1) gate_name1 (...);

new_gate_type #(parameter_list_2) gate_name2 (...);

…
and2_gate #(r1s,r2s_ftr,r1r,r2r_ftr,f2s_slwr,f2r_slwr,r1s,r1r,f1s,f1r) AND2_24(IIII352,v8,C124D);

and2_gate #(r1s,r2s_ftr,r1r,r2r_ftr,f2s_slwr,f2r_slwr,r1s,r1r,f1s,f1r) AND2_25(IIII336,C124D,v12);
…

new_gate_type #(parameter_list_j) gate_namej (...);

endmodule

------------------------------end of modified benchmark ------------------------------

One last thing to notice is, as we use ATPG to generate scan-chain(s) and then delay test vectors, it’s important to correspond the order(s) of original DFF outputs and inputs to that of the chain(s).
5. Benchmark Simulation
The adoption of global parameters brings great convenience to the insertion of process variances:
For example, the nominal rising and falling time for single PMOS and NMOS are balanced to be both 100 (unit not specified); however, because of process variances, like minor changes of doping concentrations, some chips may be slightly faster or slower on either rising or falling speed, and the scaling factors are same for all same type of FETs, despite in parallel or serial manner. Thus, upon the instantiation of one same benchmark, the global parameters may be reassigned so that they will affect all gates within this circuit. This is based on the assumption that process variance is uniform on one same chip, as it ordinarily occupies only a small portion of the whole wafer area.
A typical test bench for the modified benchmark is as follow.
------------------------------test bench------------------------------

module test_s1488 ();

reg [7:0] CL_INs;
reg [5:0] SEQ_INs;

wire [18:0] CL_OUTs;
wire [5:0] SEQ_OUTs;

 initial begin

 CL_INs=8'b0000_0000;

 # 10000 CL_INs=8'b1010_1010;
SEQ_INs=6'b101010;

 # 10000 SEQ_INs={SEQ_INs[4:0],1'b1}; //LOS

//# 10000 SEQ_INs=SEQ_OUTs;

//LOC
#10000 $finish;

 end

 s1488

//instantiate with single MOS rising_time=110 and falling_time=90
 #(110 ,55 ,37 ,28 ,220 ,330 ,440 ,11 ,6 ,4 ,3 ,22 ,33 ,44 ,90 ,45 ,30 ,23 ,180 ,270 ,360 ,9 ,5 ,3 ,2 ,18 ,27 ,36)
DUT(CL_INs,CL_OUTs,SEQ_INs,SEQ_OUTs);

endmodule
------------------------------end of test bench ------------------------------

Here we use a random vector pair to generate delays on SEQ_OUTs. In real diagnosis, vector pairs are acquired from ATPG. By applying the same vector pair contantly, and observing the delay of a certain SEQ_OUTs pin from the switching of vector V1 to V2, we can see that it bears a random component.
[image: image4.png](iliil]

1ilus

[10 w1033 r

(11033 r]

 [image: image5.png]—Joioiot

 [image: image6.png]oot

 [image: image7.png]—J0ToT0t

Figure 4. Delay differences on same chip under same vector pair
One more time we apply the same stimulus on this benchmark as instantiated with single MOS rising_time=90 and falling_time=110, and compare the new SEQ_OUTs waveforms (right side of figure 5) with that of old parameters (left side). It’s clear that output timings changed on the systematical view.
[image: image8.png](010101

(OO

JE—

I

 [image: image9.png][OT0101

Figure 5. Delay differences resulting from process variance
6. Conclusion
We developed a convenient method to simulate the behavior of integrated circuits under process variance. Statistical delay information can be acquired using this approach to facilitate researches on new test and diagnosis methodologies. This idea bases on high level Verilog HDL and delay parameters can be conveniently customized. Relative, instead of absolute timing/delay values are applied and acquired and can be easily factored onto industry cell library values.
8

[image: image11.png]DD

s

